Category Archives: Model Design

Battery Powered vs. Track Powered

Young and new recruits to the LEGO train scene will never have known anything other than the current generation of power functions. Battery packs coupled with infrared receivers and remote controls, each taking up precious space in your build. However, it didn’t used to be this way. The previous generation of trains (ignoring the aborted RC train theme) used metal rails to directly power the motors. Both generations had their own advantages and disadvantages, which I will attempt to shed some light on. In a follow up article, I will go over some advanced applications of each, and hybrids that combine the best of both technologies.

Batteries take up space. In my eye, this is Power Function’s main drawback. Additionally, the current generation Infrared (IR) Receiver is quite large and the sensor on it needs to be visible from outside the locomotive for the signal to reach it.

IR Receiver with the shell removed. Why is this thing so big?

Trying to incorporate the AAA/AA battery pack and the IR Receiver into a model is often very tricky, especially when working with 6 or 7 stud wide models. Additionally, batteries need to be recharged or replaced after several hours, so the battery pack needs to be accessible or removable.  When running for many consecutive hours at a convention, swapping batteries becomes a chore. For home use, it is not such a big deal. The IR receiver also has difficulty reaching more than a few feet when there aren’t any walls or ceiling to reflect the light off of. On the other hand, the IR receiver and battery boxes are still currently in production, which means they’re cheap.

PF track Vs. 9V track

Track power has always been my preference and I’ve iterated through several generations of electrical systems searching for the best configuration. LEGO’s classic 9V train controller is simple, turn the knob and your locomotive starts to move. The biggest limiting factors are being limited to metal equipped track and the original 9V train motor, (meaning no double crossovers). Additionally, laying out certain track geometries will cause short circuits. Also, once your loop gets to a certain length, additional power hookups are required so as to avoid slow downs. Of course, the main drawback is price. Expanding or building a new 9V layout is very costly. 9V straight track hasn’t been manufactured in almost 10 years and averages $3.50 each used and $5.50 new on the aftermarket. Original 9V train motors average $35 each used and $75 new.  Many clubs still use 9V systems, and with ME Models finally shipping their metal track, will continue to do so for years to come.

Things start to get interesting when you get rid of LEGO’s speed controller and start substituting your own electronics. Swap in the third party Bluetooth controlled SBrick in lieu of the IR receiver and not only save space, but also gain control range, gain 2 more channels for a total of 4, and lose the line of sight requirement.

In addition to being gigantic, the output power per channel is low.
2 Channel PF IR Receiver3rd party SBrick, approx 8x available power output in a smaller footprint


Get rid of the LEGO 9V train controller and use constant track power to feed a Bluetooth motor controller. No batteries! Or better yet, use batteries and track power together: constant track power feeding a Bluetooth motor controller, with batteries for backup. With such a system, a track powered locomotive can continue through double crossovers, over draw bridges, maintain consistent speeds through spotty connections on dirty track, or possibly even charge itself. With the track providing power most of the time, the batteries will rarely need to be recharged.

Read about my experiments in hybrid systems in depth in my next article.

The Union Pacific Type – Building a Steam Locomotive in LEGO

This will be the first in a series of articles about my process of building a LEGO steam locomotive. I intend to cover a variety of topics in this series including research, the use of custom elements, aftermarket electrical devices, and building techniques. While I will focus on a specific locomotive project I am currently working on, this series will not include a full set of step-by-step instructions to that locomotive. My intention is to share some experiences and techniques that I hope people can apply to any steam locomotive project, and perhaps other types of LEGO models as well. At any rate, my designs are usually pretty fragile and don’t really lend themselves to redistribution via instructions. Instead, I will lay out my approach to building a steam locomotive and why I think it is effective. I hope that this will help people who are struggling with what I think is a particularly difficult type of model to build or, at least, be of some interest to the readers of this site.

Continue reading The Union Pacific Type – Building a Steam Locomotive in LEGO

Decals: Where to find them. “North American Edition”

Good decals can greatly enhance a model. They can take an ordinary model and make it interesting, and they can put the final jewel on a great model. This will be the first in a series of articles on decals. We plan to cover where to find decals, how to apply the various decal types, and even how to make your own. This first segment will cover where can you get decals for North American railroad models. Since I live in the United States and model US railroads, most of my decal experience in from there, so that’s where I’ll start. I hope to cover more international sources in the future, so if you, our readers, have any recommended suppliers I would love to hear about them.

If it’s decals from a LEGO set that you need you can always turn to Bricklink. But official LEGO decals are limited when building trains based on real life prototypes. When you need decals for a Union Pacific boxcar, or a New York Central diesel locomotive, where do you turn? Fortunately the scale model railroad hobby has numerous decal suppliers to fill our needs. But not all decals are made the same and not all decal suppliers cover the same subjects. This article is intended to be an overview of the more common sources of model RR decals in North America and what they offer.

Decals from the Maryland & Pennsylvania RR Historical Society help make my model of Ma&Pa caboose 2005 a stand out build.

Continue reading Decals: Where to find them. “North American Edition”

Matson’s Landing in L-Gauge – Truckin’ Along

If you’ve been following the Matson’s Landing in L-Gauge series here on BMR, you’ll recall that I’ve settled on both a prototype, a Series B Climax locomotive, and a scale of 1:33, which works out to roughly 8 studs wide. With the initial high-level requirements defined, it’s time to start working on the actual brick design of the motive power.

When I studied architectural design back in college, one of my favorite professors had a saying: “Form follows function.” What he meant by this was that a pretty design isn’t useful if it doesn’t work. This is especially true when it comes to designing things that move, such as locomotives. If I built a gorgeously detailed locomotive that can’t run on a track, it’s not very effective for a working layout. With this in mind, my first task is to build a functional drive system. Once I know that I have something that performs reliably, I can then work on making it look nice.

The drive system of the real-life Climax locomotive actually lends itself very well to being replicated in LEGO form. A main axle below the locomotive turns gears that drive gears connected to each axle of the locomotive’s trucks, or bogies. Power is therefore transferred from the engine to each of the four wheel sets. For my first attempt at a bogie design, I set out to replicate this setup.

LEGO Scalar measurments of Climax truck
View of truck gearing from the Climax Locomotive Catalog

My first step was to take measurements and notes of details of the Climax trucks using the plans that I had found in Model Railroad Craftsman. The side frames of the trucks measured about 7 studs along the top edge, and 5 along the bottom edge. The trucks are assembled from iron bars, angled from bottom to top, with springs on the bolster and both journal boxes. Looking back at the Climax Locomotive Catalog, I found an image of the interior of the truck. It shows bevel gears on each axle, rotated opposite each other, driven by smaller bevel gears along a center axle. With this information, I sat down and started building. Some people work better building virtually at first, then translating to brick. I tend to work in the opposite direction, especially for pieces that have to move. I build first, then document what I’ve built using MLCad.

When I build, I use a process that the website development industry calls “iterative design”. Basically, you create a design, test it, refine it, test it again, and so on, until you come up with a finished product. For this project, I tried to document each iteration for you. This process took a few days, with each new design being slightly better than the last.

Version 1 – Basic Design

For the first iteration, I focused on replicating the prototype truck as closely as possible. I thought the overall design came out well. It was a bit over sized, but it had the basic look of the iron bar trucks with springs, and the gearing also matched the prototype. Testing, however, showed a huge issue very quickly. At 1:33 scale, the locomotive’s base would be about 28 studs long. With a truck on each end, there would not be enough room between the two to fit the axles and universal joints needed to drive the axles, and still allow the trucks to pivot.

Version 2 – Space for U-joints

For the second iteration, I kept the look of the outer frame, but redesigned the interior of the truck to remove one set of gears. This means that the locomotive would be driven more like a Heisler locomotive, with power to only one axle per truck, but allowing for much more room for the universal joints. During testing, these trucks worked well on straight trucks, but caught on switch points or uneven track. The bottom of the side frame needed to be raised by one plate to allow for more clearance.

Version 3 – More clearance

Version three of the Climax trucks turned into an almost complete redesign. This version uses a Studs-Not-On-Top (SNOT) approach, which allowed me more clearance at the track level. The change of design also allowed me to shorten the side frames to be closer to the prototype measurement, but still keep the spring detail. This version was also more solid, with no parts falling off while running. It does lose some of the iron bar look, but the overall angled shape remains. I found it to be a good compromise between function and form (remember: Form follows function). Track testing found this design to run well on straights, curves, s-curves and through switches.

Version 4 – Less clearance

Climax truck Version four was a slight redesign of the bolster section, purely for cosmetic reasons. Version three left just a bit too much space between the bottom of the locomotive base and the top of the truck frame. While functionally it worked, I wanted to lessen the space to make it look better. I was able to remove a single plate of height, which brought the measurement between the base and trucks closer to the scaled prototype.

Version 5 – Final?

Finally, we have the last iteration, Version five. While testing Version four, I found that the inverted plates on the trucks, when running through curves, were catching on the edges of the locomotive base that I’ve been using. I tried using inverted tiles on the ends of the bolsters, but found that these caught as well. The final solution was to use part 2654, Slide Shoe Round 2×2, to act as slides, keeping the space between the truck and the locomotive base, but allowing the trucks to pivot without catching.

Next up, I’ll start working on the locomotive’s main drive system.

Research – Where does he get those wonderful toys?

Over on our Facebook page, reader Martijn van der Linden asked a great question about where, exactly, some of us find our research material while building.

My short answer was, everywhere.

For a longer answer, here are a few of the places that I look for information and inspiration.

  • Online: The Internet has, literally, the world’s knowledge at our fingertips. The difficult part can be sorting out useful information from not-so-useful information. I tend to follow some of the scale-modelers websites, some modeling blogs, and a lot of Facebook forums that include information on the railroads or scales that I am interested in.
  • My Personal Collection: I’ve been collecting information on trains for a number of years, so I have a decent collection of books, magazines, and photographs that I’ve picked up along the way. Much of this was second-hand, either from modelers who were leaving the hobby, or from train show vendors with good deals.
  • Libraries: Everything I have in my personal collection can be found in libraries. Here in rural Vermont, libraries tend to be small, so I may need to look in more than a few for the information that I need, but it’s usually worth it. Many libraries, especially the small local ones, haven’t had their collections digitized, so you’ll often find information that you can’t find online.
  • Historical Societies: A number different organizations have historical societies who collect and sometimes publish information about the past. In my case, The Rutland Railroad Historical Society publishes a quarterly journal that contains photos, drawings, and sometimes interviews with past railroad employees. This gives me a wealth of information about that particular railroad. Outside of the Rutland, I also like to visit town historical societies. A lot of times these small places will have photos and documents that, like small libraries, can’t be found online. Some will even have museums with artifacts from the railroad that you’re trying to model.
Rutland Flatcar
Rutland 2762 with its real-life inspiration at the Danbury Railway Museum
  • Museums: Museums are amazing places, ranging from the small town ones mentioned above, to the big railroad oriented ones like those in Strasburg, Pennsylvania. Several years ago I had a train display at the Danbury Railway Museum with a couple of friends. As it turned out, their collection of rolling stock included two Rutland cars that were being saved for preservation. I was able to get detailed photos of the cars, and chat with a couple of the guys who helped moved them originally.
  • Train Shows: Train shows are my version of the best holidays. Surrounded by hundreds or thousands of other train fans, browsing through tables of products ranging from brand new to decades old, I always find inspiration. A couple of the large shows that I attend include collections of photographs, where I can sometimes find photos or drawings that have never been published before. I generally can find a book or magazine to add to my personal collection as well. A lot of the attendees go there to buy models. I go to attain information.
  • Other Modelers: Many of my friends are modelers, and most don’t focus on the same things. For instance, while I tend to collect information about the Rutland Railroad, I know that if I ever need information about the Ma & Pa, Cale would be a good source. My friends also model in different scales, so I can, for instance, ask my Live Steam friends how a particular boiler arrangement might work, or an HO modeler where to find information about older diesel locomotives. Some of these friends have, or do, work for the railroad, so they can sometimes give me information based on experience.

For a few specific places that I like to look online, here are some links. Keep in mind that I’m a northeastern United State modeler. Other countries may have other sites worth looking into.

  • Steam Locomotive Dot Com – Includes builder’s photos, specifications, and locations of existing equipment.
  • Fallen Flags and Other Railroad Photos – Photographs and manuals, organized by road name.
  • – User-submitted photos from all over the United States, searchable by road name, locomotive type, and location.
  • Google Books – Digitized books going back to as far as the 1700s. A couple of my favorites are the Car Builder’s Cyclopedia’s, and some of the Railroad Structures books. You can also sometimes find railroad timetables, and industry information from the time-period.

Matson’s Landing in L-Gauge – A Question of Scale

On the last installment of the Matson’s Landing in L-Gauge series, Mike Pianta asked what scale the locomotive will be if I build it as an 8-wide model. Fortunately, that’s just the topic I had planned to cover in this post.

Generally LEGO® train builders fall into two camps: 6-wide and 8-wide. Traditionally, official LEGO train designs have been built to a “scale” of 6 studs wide. Since the LEGO Group’s trains aren’t really scale models, the width of the design is less important than the playability of the set. Builders wishing to add more realism to their models tend toward the 8-wide “scale” (roughly 1:48) which is a good match to the scale height of a minifig.

For the Matson’s Landing layout, I had originally decided to go with an 8-wide, 1:48 scale. This would allow me to quickly convert real life measurements into studs (real measurement, divided by 1.25, equals number of studs). However, as I began researching logging locomotives to build, I had a realization.

Logging locomotives are really small.

Climax Locomotives
Climax Locomotives

As I wrote in my last post, I’ve settled on building a Climax locomotive. While researching, I found that Climax Manufacturing Company, in their catalog, offered three different models of geared locomotive. The Climax “A” style locomotive is most like the Clishay locomotive that I wrote about before, with an upright or T-style boiler on a basic flat frame. The Climax “B” style is a more traditional looking machine, though the angled side-mounted pistons drive gears beneath the locomotive, instead of directly moving the driving wheels. Their “C” style locomotive is basically a style “B” with an additional tender and more wheels. After reading through the Climax catalog, I really liked the look of the Climax “B”. The gearing is more involved than what I had originally planned, but a challenge while building is always a good thing.

With a definite prototype model picked out, my next step was to research measurements. I took to the Internet in search of articles, photos, and builder’s drawings. I was fortunate to find a mention of scale drawings of a Climax “B” in the February 1985 issue of the magazine Railroad Model Craftsman. I was even more fortunate to find that I had a copy of that issue in my personal magazine collection. I quickly found the issue and read about the Cario & Kanawha Climax No. 5.[1]

(Tip: If a model railroader in his 80s offers to sell you 30 years worth of modeling magazines, especially Model Railroad Craftsman, buy them).

While the article on C&K No. 5 was interesting, what I was really after were the scale line drawings by Ed Gebhart. The basic dimensions shown on the drawings where close to what I had read in the Climax catalog, so I felt fairly certain that any other dimensions would be correct. I scanned the drawings and loaded them into LEGO Model Scaler, an online tool by Paul Kmiec, a.k.a Sariel, of Poland.

LEGO Model Scaler
Prototype drawings in LEGO Model Scaler

LEGO Model Scaler is an awesome tool. Upload an image from the web, draw a known dimension over top of it, enter how many studs that dimension should be, and hit the calculate button. From there on out, any other dimensions you draw over your image will be shown in studs. Incredibly handy for building truly scale models. The other nice thing about the tool is that if you enter your dimensions at a 1:1 scale, you can quickly find dimensions that aren’t listed on the drawings. For instance, on the C&K No. 5 drawing, the narrow gauge track is dimensioned at 3 feet wide. Entering 3 as my base dimension in Scaler, I can quickly see that a Climax “B” locomotive was only 7.5 feet wide. At my target 1:48 scale, this would only be 6 studs wide. While this does fit the scale, it doesn’t leave a lot of room for the PF components (battery box, IR sensor, and motor) needed to run the locomotive.

Climax Rear
Too narrow?

With this in mind, I thought about a few options. I could keep the original scale that I had settled on, and put the PF battery box, and possibly more, in a separate car that would always be attached to the locomotive. Stephen Pakbaz did this very successfully with his Shay Engine. I see the Matson’s Landing layout as a switching layout, however, so I really want the locomotive to be independent of any other cars.

Another option would be to build the locomotive in scale with the track. Climax locomotives were offered in both standard and narrow gauge. Narrow gauge would give me lots of room for electrical components and details, but the model, and therefore the layout, would be huge.

A third option, which I’ve decided to go with, was to base the locomotive scale on the size of the driving wheels. Measuring the standard LEGO train wheel, which I’m planning on using for the drivers, I found them to be about 2.5 studs wide. Looking at the wheel diameter listed in the Climax catalog, I found that the prototype wheels were, on average, 28 to 30 inches. Using these dimensions, and LEGO Model Scaler, I found that I could build my locomotive at roughly 1:33 scale. This should allow me enough space to keep all of the PF parts on board the locomotive, but still be small enough to have a workable layout in the end. Oddly enough, I found that the Climax, at 1:33 scale, turns out to be 8 studs wide. So, while the scale isn’t originally what I had planned, the dimensions are.

In the next post, I’ll go over the start of the locomotive build, and my iterative process for building a (hopefully) functioning model.

[1] Kline, Ben. “The Mystery of Cairo & Kanawha No. 5.” Railroad Model Craftsman, February 1985, 73-76. Drawings by Ed Gebhart.