Supercapacitor Power Packs

As an electrical engineer, I have always found lithium batteries to be…. amusing. They’re extremely volatile; if overcharged, they explode. If over-discharged, they explode. If charged too quickly, they explode. If discharged too quickly, they explode. If punctured, they explode. If they get too hot, they explode. If they get too cold, they simply don’t work. Think back to the recent debacle of the Samsung Galaxy Note 7 battery woes. But yet, these are the best batteries that are currently mass produced. Almost everyone carries one in their pocket and frequently holds it close to their face. For applications where the energy density (energy stored per volume) or the total energy stored (in Watt-hours) isn’t important, there is an alternative storage media that might be of interest to my fellow model train fans. Enter supercapacitors.

Not quite the same thing.

What follows isn’t for the electronically faint of heart. Accidentally short circuiting an alkaline battery or similar for a few seconds isn’t going to cause much harm. Short circuiting a bank of supercapacitors will melt wires and turn your supercapacitors into charcoal in no time. Be smart.

A supercapacitor is different than a battery in several important but sometimes subtle ways. For a model train, some of these differences are to our advantage, others are not. First off, when a battery is discharged from 100% to 0%, the voltage is fairly consistent. The difference between the full and empty voltages and the rate at which it falls depends on the type of battery. For example, a NiMh battery is about 1.45V full, and 1.2V empty. A capacitor is different; when empty, it is 0V. The “full” voltage is whatever you charge it to. Different capacitors have different maximum voltage ratings. When discharged, the voltage falls from the charge voltage to 0V. Most supercapacitors are rated for either 2.5V or 2.7V. Similar to batteries, putting multiple capacitors in series is how you get the desired voltage capacity. For example, a 9V system would need 4 2.5V/2.7V supercapacitors in series. When the system is charged up to 9V, the voltage will be split evenly with 2.25V each on the 4 capacitors.

The second major difference between the two technologies is the speed at which they can be charged. NiMh and LiPo batteries are usually limited to some fraction of their amp-hour capacity for their charge rate. Meaning, a 2000mAh NiMh battery can be safely charged at 1-2A. Of course, this varies based on manufacturer specs, and charging them faster will degrade their capacity faster, but that is neither here nor there. A supercapacitor has a much higher safe charge/discharge rate. The small ones I like to use in my locomotives are safe up to 3.3A! Much higher rated ones exist too, I built an experimental system that used 100F supercaps rated up to 35A. Additionally, a rechargeable battery typically is only rated for a few thousand charge cycles. A supercap can be charged several hundred thousand times.

The major downside to supercapacitors is energy density, or how much power you can store per volume. My choice supercaps are 4mWh/cm^3 whereas a 2000mAh NiMh battery is about 350mWh/cm^3. So they’re less dense by about a factor of 100, useless, right? No! If all we need to do is get over an unpowered track section, for example an unpowered ME Models R104 180 degree curve, we only need about 10 seconds of run time. So if we have an equal volume of supercaps to AA batteries, our run length will be 1/100th: an AA battery set lasts several hours, call it 2h on the conservative side. That means an equally sized supercap bank will run for 1.2 minutes, plenty of time for zipping through a short unpowered track section!

Some of the difficulty in implementing a supercap bank is limiting the charge current. From the perspective of your power supply, capacitors are more or less a 0 ohm short circuit which means the theoretical charge current will be infinite. You can limit this with a resistor, but realistically this is unfeasible. A resistor spec’ed correctly would have to be very physically large to allow for high heat dissipation. It’d get hot enough to melt LEGO (ask me how I know)! Additionally, as the capacitors charge, the charge rate slows down exponentially. Luckily, there are other methods available to limit the current. I found a cheap, small product on eBay that fits the bill perfectly: a CC/CV regulator. Not only can this thing limit the voltage to the bank, but it can also limit the current.

With a CC/CV regulator set to never charge past the supercap’s rated voltage and current, the next step is regulating the output of the supercaps. Because we don’t want our train to slow down as the supercap bank discharges, we need a DC/DC regulator. There are some nice cheap ones on eBay for about $1.50 that just so happen to be exactly 3 studs wide.

Above is my Amtrak B32-8WH being retrofitted with 10x 15F 2.7V supercaps. The small circuit board on the left is the CC/CV charger. The wires going down through the center lead to the fuel tank, which is where the DC-DC regulator, bridge rectifier, and bluetooth motor controller all live.
Complete circuit diagram of my supercap system. The bypass diode on the CC/CV charger was later removed.

I’ve also made a system with 10x 100F supercaps. The added capacity doesn’t really add any utility over 10F-20F supercaps, so all of my recent systems are 15F. One of the downsides to charging the supercaps as quickly as possible is the sizing of the power supply required to handle the peak current, especially when you have multiple locomotives on the same circuit. Luckily for me, my work has stacks of 24V 6.5A power supplies lying around. Unfortunately for you, they are not cheap new. A used PC power supply can be rigged up to perform similarly, but as always, the exercise is left to the reader…

5 thoughts on “Supercapacitor Power Packs”

  1. I’ve seen your work on Flickr, and have thought about implementing it.The thing that keeps me from doing it is being limited to stock Lego controllers on club/display layouts. Also my excessively heavy train continually makes me flip flop between 9v and PF (S-Bricks are in the mail!).
    But I still enjoyed reading this article, and look forward

  2. Greatly enjoyed reading this article. As a current undergraduate studying Computer Engineering, you explained everything exceptionally well. Looking forward to any future articles you submit. Perhaps one about that bluetooth controller is in order?

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.